Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering
نویسندگان
چکیده
BACKGROUND Escherichia coli has emerged as a promising platform microorganism to produce biofuels and fine chemicals of industrial interests. Certain obstacles however remain to be overcome, among which organic-solvent tolerance is a crucial one. RESULTS We used global transcription machinery engineering (gTME) to improve the organic-solvent tolerance (OST) of E. coli JM109. A mutant library of σ(70) encoded by rpoD was screened under cyclohexane pressure. E. coli JM109 strain harboring σ(70) mutant C9 was identified with capability of tolerating 69 % cyclohexane. The rpoD mutant contains three amino-acid substitutes and a stop-codon mutation, resulting a truncated sequence containing regions σ(1.1) and σ(1.2). Total protein difference produced by E. coli JM109 strain harboring C9 was examined with 2D-PAGE, and 204 high-abundant proteins showed over twofold variation under different solvent stress. CONCLUSIONS Our results show that several genes (gapA, sdhB, pepB and dppA) play critical roles in enhanced solvent tolerance of E. coli, mainly involving in maintaining higher intracellular energy level under solvent stress. Global transcription machinery engineering is therefore a feasible and efficient approach for engineering strain with enhanced OST-phenotype.
منابع مشابه
Expression of tolC and organic solvent tolerance of Escherichia coli ciprofloxacin resistant mutants
AcrAB-TolC is a major efflux pump in Escherichia coli. It was reported that tolC is overexpressed and involves in improving the organic solvent tolerance level in Escherichia coli marR mutants that are resistant to several antibiotics, such as ciprofloxacin. Low and intermediate levels resistance did not improve organic solvent tolerance. Thus, in this descriptive-experimental study it was deci...
متن کاملExpression of tolC and organic solvent tolerance of Escherichia coli ciprofloxacin resistant mutants
AcrAB-TolC is a major efflux pump in Escherichia coli. It was reported that tolC is overexpressed and involves in improving the organic solvent tolerance level in Escherichia coli marR mutants that are resistant to several antibiotics, such as ciprofloxacin. Low and intermediate levels resistance did not improve organic solvent tolerance. Thus, in this descriptive-experimental study it was deci...
متن کاملExpression of TolC and Organic Solvent Tolerance of Escherichia Coli Ciprofloxacin Resistant Mutants
AcrAB-TolC is a major efflux pump in Escherichia coli. It was reported that tolC is overexpressed and involves in improving the organic solvent tolerance level in Escherichia colimarR mutants that are resistant to several antibiotics, such as ciprofloxacin. Low and intermediate levels resistance did not improve organic solvent tolerance. Thus, it was decided to measure tolC expression and organ...
متن کاملEngineering yeast transcription machinery for improved ethanol tolerance and production.
Global transcription machinery engineering (gTME) is an approach for reprogramming gene transcription to elicit cellular phenotypes important for technological applications. Here we show the application of gTME to Saccharomyces cerevisiae for improved glucose/ethanol tolerance, a key trait for many biofuels programs. Mutagenesis of the transcription factor Spt15p and selection led to dominant m...
متن کاملEnhancing E. coli Tolerance towards Oxidative Stress via Engineering Its Global Regulator cAMP Receptor Protein (CRP)
Oxidative damage to microbial hosts often occurs under stressful conditions during bioprocessing. Classical strain engineering approaches are usually both time-consuming and labor intensive. Here, we aim to improve E. coli performance under oxidative stress via engineering its global regulator cAMP receptor protein (CRP), which can directly or indirectly regulate redox-sensing regulators SoxR a...
متن کامل